学术海报

学术海报

    化学化工学院学术报告:The Past and Future of Artificial Photosynthesis

    日期:2019-05-05来源:化学化工学院 浏览量:

    报告人:Prof. Shunichi Fukuzumi,日本大阪大学

    报告题目:The Past and Future of Artificial Photosynthesis

    报告时间201956日(星期一)上午10:30

    报告地点:逸夫科学楼A315

    报告人简介1950年生于日本名古屋,1978年在东京工业大学取得博士学位,同年加入印第安纳大学从事博士后研究工作,1981年起在大阪大学任教,现为大阪大学杰出教授,韩国梨花女子大学杰出教授。研究方向为人工光合作用、光化学和电子转移化学,被誉为“电子转移反应第一人”。Fukuzumi教授已在Nature ChemistryJ. Am. Chem. Soc.300余篇)等期刊发表论文1000余篇,文章累计被引用44,206次,H因子为1022005年获日本化学会大奖,2014物理有机化学奖,2016年获亚洲及大洋洲光化学协会奖亚洲生物无机化学杰出成就奖2017年获理查德·斯莫利研究奖2005年起担任IUPAC名誉委员;2011年起担任日本科学理事会兼职委员。

    报告摘要Artificial photosynthesis is urgently required in order to solve global energy and environmental issues. This lecture focuses on the past and future of artificial photosynthesis.1 Artificial photosynthesis consists of five units: (1) the light–harvesting (LH) unit, (2) the charge–separation (CS) unit, (3) the catalytic unit for water reduction, (4) the catalytic unit for water oxidation, and (5) the catalytic CO2 fixation unit. We have developed a variety of photosynthetic reaction center models composed of organic electron donors and acceptors linked by covalent or non-covalent bonding, which undergo efficient charge separation and slow charge recombination.2 The efficient charge-separation step has been successfully combined with the catalytic water reduction step with earth-abundant metal catalysts to develop efficient photocatalytic hydrogen evolution systems.3,4 Efficient CO2 reduction catalysts have also been developed.5 The photocatalytic oxidation of water with O2 in the air to produce H2O2 has been achieved,6-8 together with the development of one-compartment H2O2 fuel cells.9-10 The photocatalytic oxidation of water with O2 in the air was found to be enhanced significantly in seawater.11 Thus, the combination of the photocatalytic H2O2 production from seawater and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising liquid solar fuel than H2.11,12 The solar-driven oxidation of H2O by O2 to produce H2O2 has also been combined with catalytic oxidation of benzene by H2O2 to produce phenol, when the overall reaction is solar-driven hydroxylation of benzene by O2, which is the greenest oxidant, with H2O that is the greenest reductant.13 The first functional mimic of Photosystem II (PSII) is also discussed together with the future combination with a PSI mimic.14

    References

    1. S. Fukuzumi, Joule, 2017, 1, 689.

    2. S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47, 1455.

    3. S. Fukuzumi, Curr. Opinion Chem. Biol. 2015, 25, 18.

    4. S. Fukuzumi, Y.-M. Lee, W. Nam, Coord. Chem. Rev. 2018, 355, 54.

    5. S. Fukuzumi, Y.-M. Lee, H. S. Ahn, W. Nam, Chem. Sci. 2018, 9, 6017.

    6. S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Energy Environ. Sci. 2013, 6, 3756.

    7. K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, ACS Energy Lett. 2016, 1, 913.

    8. S. Fukuzumi, Y.-M. Lee, W. Nam, Chem.–Eur. J. 2018, 24, 5016.

    9. Y. Yamada, M. Yoneda, S. Fukuzumi, Energy Environ. Sci. 2015, 8, 1698.

    10. S. Fukuzumi, Y. Yamada, ChemElectroChem 2016, 3, 1978.

    11. K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat. Commun. 2016, 7, 11470.

    12. S. Fukuzumi, Y.-M. Lee, W. Nam, ChemSusChem 2017, 10, 4264.

    13. J. W. Han, J. Jung, Y.-M. Lee, W. Nam, S. Fukuzumi, Chem. Sci. 2017, 8, 7119.

    14. Y. H. Hong, J. Jung, T. Nakagawa, N. Sharma, Y.-M. Lee, W. Nam, S. Fukuzumi, J. Am. Chem. Soc. 2019, 141, in press.